226/Math.(O)

23 / 22114

B.Sc. Semester-II Examination, 2023 MATHEMATICS [Honours]

Course ID: 22114 Course Code: SH/MTH/203/GE-2

Course Title: Real Analysis

[OLD SYLLABUS]

Time: 2 Hours Full Marks: 40

The figures in the right-hand margin indicate marks.

Candidates are required to give their answers in their own words as far as practicable.

Notations and symbols have their usual meaning.

UNIT-I

1. Answer any **five** from the following questions:

 $2 \times 5 = 10$

- a) Verify Bolzano-Weirstrass' theorem for the set $\{\frac{n}{n+1}: n \in N\}$.
- b) Is boundedness a necessary condition for a set to have a limit point?
- c) Let the set $S = \left\{ \frac{2}{x+1} : x \in (-1,1) \right\} \subset \mathbb{R}$. Find the set S', where S' is the set of all limit point of the set S.

- d) Apply Sandwich theorem to determine the limit of the sequence $\left\{\frac{\sin n}{n}\right\}$.
- e) Give examples of a set which is dense in \mathbb{R} and which is nowhere dense in \mathbb{R} .
- f) Test the convergence of the series $\sum u_n$, where $u_n = \sqrt{n^4 + 1} \sqrt{n^4 1}$.
- g) Show that the series $\sum \frac{(-1)^{n+1}}{3\sqrt{n}}$ is convergent but not absolutely.
- h) Examine if the set S is closed or open, where $S = \{x \in R: \sin x = 0\}.$

UNIT-II

2. Answer any **four** from the following questions:

 $5 \times 4 = 20$

- a) i) Show that the integers set \mathbb{Z} has no limit point.
 - ii) Examine if the set $S = \bigcup_{1}^{\infty} I_n$ is closed in \mathbb{R} , where $I_n = \left\{ x \in \mathbb{R} : \left(\frac{1}{3}\right)^n \le x \le 1 \right\}$. 2+3=5
- b) i) Let *S* be a non-empty subset of \mathbb{R} , bounded below and $T = \{-x : x \in S\}$. Prove that the set T is bounded above and $\sup T = -\inf S$.

- ii) Verify Bolzano-Weierstrass theorem for the set $\subset \mathbb{R}$, where $S = \left\{\frac{n-1}{n+1} : n \in \mathbb{N}\right\}$. 3+2=5
- c) i) Show that every compact subset of \mathbb{R} is closed.
 - ii) Prove or disprove: The set $S = \{x \in \mathbb{R}: \sin \frac{1}{x} = 0\}$ is compact. 3+2=5
- d) Examine the convergence of the series $\frac{1}{1+2^{-1}} + \frac{1}{1+2^{-2}} + \frac{1}{1+2^{-3}} + \cdots$ 5
- e) Prove that union of any finite number of closed sets is closed. Does this result hold for union of arbitrary family of closed sets? Justify your answer.

 3+2=5
- f) If $\sum u_n^2$ and $\sum v_n^2$ be both convergent prove that the series $\sum u_n v_n$ is absolutely convergent. 5

UNIT-III

3. Answer any **one** of the following questions:

$$10 \times 1 = 10$$

a) i) If $\{u_n\}$ and $\{v_n\}$ are two real sequences converges to A and B respectively. Then prove that

$$\lim_{n} \frac{1}{n} (u_1 v_n + u_2 v_{n-1} + \dots + u_n v_1) = AB.$$

- ii) Find the limit point of the set $S = \{(-1)^m + \frac{1}{n} : m \in \mathbb{N}, n \in \mathbb{N}\}.$
- ii) Test for convergence of the series $\sum \frac{1}{\sqrt{n}} \tan \frac{1}{n}.$ 5+3+2=10
- b) i) Show that union of two enumerable sets is enumerable.
 - Show that the intersection of an arbitrary collection of closed sets in \mathbb{R} is a closed set.
 - iii) Let $\sum u_n$ be a convergent series of positive real numbers, prove that $\sum \frac{u_n}{n}$ is convergent.
 - iv) State Leibnitz's Test for alternating series. Apply Leibnitz's test to show that the series $\frac{1}{1+a^2} - \frac{1}{2+a^2} + \frac{1}{3+a^2} - \dots \text{ is convergent.}$ 2+2+2+(1+3)=10